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Abstract— This paper presents a detection algorithm for
pacemakers which is based on a signal model including a
linear combination of descriptive functions. The functions
are defined as different time scales of the two fundamental
waveforms in the electrogram. An efficient detector struc-
ture is provided by the use of a dyadic wavelet transform
with integer filter coefficients, followed by a generalized like-
lihood ratio test. The results show that reliable detection
can be obtained for moderate to high noise levels for some
common noise sources.
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I. Introduction

During the last four decades, an impressive development
in pacemaker technology has taken place. Features such
as hermetical sealing, programmability, telemetry, circuit
redundancy and rate responsive pacing have been added in
order to increase functionality and reliability [1]. However,
the basic event detection (or sensing) algorithm remains
more or less unchanged, still based on bandpass filtering
followed by an amplitude threshold. So far, IC miniatur-
ization has made limited impact in this field.

During the last twenty years, a large amount of sur-
face electrocardiogram (ECG) QRS detection algorithms
have been presented. However, event detection using the
electrogram (EGM) introduces new demands disqualifying
most ECG QRS detection algorithms. In a pacemaker the
decision must be made in real time with a delay of no
more than approximately 40 ms in order to pace safely.
Furthermore, pacemaker implementation introduces power
constraints which, in general make ECG QRS detection
algorithms too complex to be considered.

The need for better event (R wave1) detectors in pace-
makers is ever increasing. An external noise source can
essentially interfere with a pacemaker in one or several
ways [2]. During the last decades, an increasing amount
of electrical equipment has been introduced to the gen-
eral public which may be potential threats to pacemaker
functionality. This has been the topic of several studies
in recent years, where specific types of interference are in-
vestigated e.g., from cellular phones, magnetic resonance
imaging (MRI) and electronic article surveillance (EAS)
systems. The overall conclusions from these studies were
that for cellular phones no increased risk of pacemaker mal-
function exists [3]. For MRI, an increased risk and even
deaths may be related to malpractice of pacemaker pa-
tients [4]. Also in EAS systems the risk of malfunction
increases. However, these devices all affect pacemakers in

This project was supported by St. Jude Medical, Stockholm, Swe-
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1The waveform corresponding to ventricular depolarization is here,
as in many other papers, referred to as the R wave although this
terminology is defined for the surface ECG.

varying degrees due to the widely spread surveillance tech-
niques, making individual investigations necessary [5], [6].
Moreover, internal muscle noise interferes with pacemak-
ers [7].

This paper includes a short description of the material
used for evaluation. Next, the detection algorithm is pre-
sented including the signal model with the resulting detec-
tor structure and a complexity analysis of the algorithm.
Evaluation results of the algorithm are presented for some
common interference signals. Finally, the detector struc-
ture is briefly discussed.

II. Materials

In order to evaluate detection performance, an EGM
database with 50 recordings and an interference database
were combined.

A. EGM signals

The database contains EGMs from patients in different
German hospital clinics, coordinated at the Justus-Liebig
Universität in Gießen, Germany. All EGM recordings were
made from pacemaker electrodes during e.g., pacemaker
implant or replacement, under controlled and relatively
noisefree conditions. In this study, 50 ventricular record-
ings sampled at 1 kHz were used for evaluation. The
database includes subjects with no heart disease at the
recording opportunity, patients with AV blocks and sick
sinus syndrome.

In order to be able to use the database for evaluation
of event detection algorithms, the beats were annotated.
After annotation, all files were visually inspected, verified
and modified if necessary.

B. Interference

An interference database was used in order to quantify the
performance in common noisy situations. The database,
provided by St. Jude Medical, Stockholm, Sweden, con-
tains the following noise sources, cf. Fig. 1:
• Electronic article surveillance systems, where two models
operating within the same frequency band as the R wave
have been tested. The two models are the System 2500
from Esselte Meto AB, Solna, Sweden and the Ultramax
from Sensormatic Inc, Boca Raton, FL, USA.
• Household appliances, which affect through electric and
magnetic interference usually with a fundamental tone of
50 – 60 Hz, approximately in the same frequency range as
the R wave [8]. An AC powered drill and an electric hand
mixer were used for this group.
• Muscular activity, which is a wideband noise source and,
to a certain degree, spans the same frequency band as myo-
cardial signals.
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Fig. 1. External interference signals. The signals are originating from
Esselte System 2500 EAS system in (a), Sensormatic’s Ultramax
EAS system in (b), a 500 W power drill in (c) and an electric
hand mixer in (d).

C. Signal-to-noise ratio definition

A signal-to-noise ratio was defined in order to investigate
noise levels for satisfactory operation. The peak-to-peak
QRS amplitude was used as signal measure and for the
noise its standard deviation. An example of a noisy EGM
with myo-muscular noise (20 dB SNR) is shown in Fig. 2.
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Fig. 2. Example of an EGM segment with a 20 dB SNR from myo-
muscular noise.

III. Event detection

Most present ECG QRS detectors are based on the same
basic structure. A linear filter, followed by some nonlinear
transformation which conditions the signal prior to the de-
cision rule. This is also the case for present EGM R wave
detectors for implantable devices which generally are very
simple implementations including a bandpass filter and an
amplitude threshold.

A. Signal model

The EGM R wave morphology is generally more heteroge-
neous than the ECG QRS. In order to model the EGM R
wave, the model should comprise a wide range of morpholo-
gies, as modelled by a small set of functions. In this paper,

the assumption is that the R wave waveform is composed
of a linear combination of representative functions,

H = [h1 . . . hp ] (1)

with hj = [hj(0) . . . hj(N − 1) ]T . The only restriction
on H is that it must be full rank. The observed signal,
x = [x(0) . . . x(N − 1) ]T , is modelled as

x = Hθ + w (2)

where θ denotes the coefficient vector for the diffe-
rent waveforms and w is white Gaussian noise, w(n) ∈
N (0, σ2

w).
Detection problems are commonly formulated in terms

of hypothesis testing, choosing the more likely one. In this
case the problem can be formulated as θ is either zero, im-
plying that no R wave is present, H0, or nonzero, implying
that an R wave is present, H1,

H0 : θ = 0
H1 : θ 6= 0

(3)

For the general case, of course, knowledge of θ is not avail-
able, and therefore an estimate of θ is required before hy-
pothesis testing.

B. Signal representation

An important task in designing a robust detector is to de-
termine an appropriate model of H. It should be chosen
such that it resembles the basic set of morphologies of the
EGM. The optimal representation of an ensemble of signals
is given by the Karhunen-Loève (KL) transform. Thus, the
columns of H are constituted by the KL basis functions.
However, a couple of aspects makes KL basis functions less
attractive in a low complexity implementation. For exam-
ple, it is desirable to calculate the estimate θ̂ recursively
which is not possible with the KL basis functions. It is
also desirable to use small integer-based basis functions in
order to calculate the coefficients whereas the KL basis
functions are represented in floating point, implying large
word lengths.

Instead of using KL basis functions, the starting point in
modelling H has been to take advantage of a priori mor-
phologic information of the R wave suggesting that it is
composed of symmetric and antisymmetric waveforms [8].
One transform which may be implemented efficiently is the
dyadic wavelet transform. By choosing proper filters, a
symmetric and an antisymmetric filter bank are obtained.
A filter, f(n), is combined with either gs(n) or ga(n) (where
subindices s and a denotes symmetric and antisymmetric,
respectively) according to,

h1,{s,a}(n) = g{s,a}(n)
h2,{s,a}(n) = f(n) ∗ g{s,a}(2n)
h3,{s,a}(n) = f(n) ∗ f(2n) ∗ g{s,a}(4n)

...

hq,{s,a}(n) = f(n) ∗ . . . ∗ f(2q−2n) ∗ g{s,a}(2q−1n)

(4)



In (4), f(n) was chosen as a third order spline function,

f(n) = [ 1 3 3 1 ] (5)

For the antisymmetric filter bank, the filter, ga(n) was se-
lected as the first order difference,

ga(n) = [ −1 1 ] (6)

The corresponding symmetric filter bank is given by gs(n)
which was chosen as,

gs(n) = ga(n) ∗ ga(n) = [ 1 − 2 1 ] (7)

It is now possible to present an expression for H. In
this paper, scales 2 – 4 in (4) have been used since they
reflect the R wave well and introduce acceptable delays in
the algorithm, resulting in,

H =
[
h̃2,b h̃3,b h̃4,b h̃2,m h̃3,m h̃4,m

]
(8)

where h̃j,{s,a} =
[
hj,{s,a}(N − 1) . . . hj,{s,a}(0)

]T . The
reversed order is introduced in order to be consistent with
the model assumed in (2).

Calculation of H does not require an efficient implemen-
tation since this is done only once and has no real time
constraints. However, an efficient, recursive implementa-
tion of calculating the filter outputs, HT x, from the two
filter banks in (4) is convenient. This operation is known
as Mallat’s algorithm [9]. By using Mallat’s algorithm it is
possible to calculate both the symmetric and the antisym-
metric filter output from each scale by using f(n) once and
ga(n) twice. By applying the “algorithme a trous”, down-
sampling of the signal from one scale to the next may be
omitted.

C. GLRT detection

In order to decide on H0 or H1 in (3), a generalized likeli-
hood ratio test (GLRT) is used [10]. The test statistic T (x)
is compared to a threshold, γ, in order to decide between
H0 and H1,

T (x) =
p

(
x; θ̂1,H1

)

p
(
x; θ̂0,H0

) >

<
γ

H1

H0
(9)

The test is a comparison of the probability of x given θ̂1

which is the maximum likelihood estimate (MLE) of θ1

assuming H1 relative to the probability of x given θ̂0 which
is the MLE of θ0 assuming H0.

When w is assumed to be stationary and characterized
by a Gaussian probability density function, then (9) may
be reformulated to,

T (x) =
θ̂

T

1 HT Hθ̂1

σ2
w

>

<
γ

H1

H0
(10)

in which θ̂1 =
(
HT H

)−1
HT x. The numerator of T (x) can

be rewritten as xT H
(
HT H

)−1
HT x. The noise variance,

σ2
w, may be incorporated in γ since it is assumed to be

constant.
In order for the algorithm to operate in sliding time, a

new hypothesis test must be made for each successive sam-
ple. In this case a new signal vector, which is overlapping
the previous one except for one sample, is used for the new
test. Following a detection, a refractory period is intro-
duced, preventing multiple detections from a single event.

D. Algorithm complexity

An important issue when designing pacemaker algorithms
is algorithm complexity. The present detector has been de-
signed taking into account complexity constraints by e.g.,
using small integers in the filters and a recursive structure.
Essentially, only two calculations takes place in the detec-
tor; the wavelet decomposition resulting in HT x and the
test computation xT H

(
HT H

)−1
HT x.

It is possible to implement the chosen wavelet structure
efficiently by using only shifts and additions. For each sam-
ple and scale the lowpass filtering with f(n) requires 4 addi-
tions and 1 shift. Similarly, the double use of ga(n) results
in 2 additions. However, due to different gains among the
filter bank scales, a rough normalization using shift opera-
tions is also necessary in a fixed point implementation.

Calculating T (x) is somewhat more demanding. How-
ever,

(
HT H

)−1 is fixed which reduces complexity signifi-
cantly. Moreover,

(
HT H

)−1 is symmetric and sparse with
half of its elements equal to zero due to orthogonality be-
tween symmetric and antisymmetric functions. An efficient
implementation is obtained by expressing T (x) as,

T (x) =
p∑

i=1

p∑
j=1

(
HT H

)−1

i,j
xT HiHT

j x (11)

and rewriting it by completing the square. By also con-
sidering the properties of

(
HT H

)−1, the total number of
multiplications can be reduced to p2

2 + 2 and the number
of additions to p

2

(
p
2 + 1

) − 1 for each sample.
In total, using scales 2 – 4 results in 34 additions, 20 mul-

tiplications and 7 shifts per sample. Naturally, depending
on the implementation, some control operations must be
added which are not considered above.

IV. Results

In order to evaluate the presented method, some com-
mon noise signals were added to the signals in the EGM
database to model noisy environments.

A. Performance measures

Two performance measures were calculated, the sensitivity,
S, and the positive predictivity, P+,2

S =
NT

NT + NM
P+ =

NT

NT + NF
(12)

2This notation differs from detection theory where the probability
of detection, PD and probability of false alarm, PFA are used. The
relation between the two sets is PD = S and PF = 1 − P+, respec-
tively.



where NT is the number of true detections, NM is the num-
ber of missed detections and NF is the number of false de-
tections. A total of 3367 annotated events were found in
the database.

B. Noiseless performance

Although it is important for an event detector to handle
high interference levels, most of the time, the pacemaker
is operating in low noise environments. For this reason, a
brief part is included considering the noiseless performance.
The overall no-noise performance was S = 0.998, P+ = 1
with the threshold γ = ηθ̌

T

1 HT Hθ̌1 where θ̌1 was calcu-
lated as the median of θ̂1 of the ten first R waves in each
recording, cf. Table I.

TABLE I

Noiseless performance.

Threshold, η 1 − S, [×10−3] 1 − P+, [×10−3]
0.3 2.0 21
0.4 2.3 0
0.5 2.7 0
0.6 4.9 0
0.7 23 0

C. Performance in noise

Performance was evaluated for two noise levels, 20 dB and
25 dB. For each noise level, the results for three levels of
η are presented, cf. Fig 3. It is shown in Fig. 3 (a) that
S decreases for increasing η for all noise sources at 25 dB
SNR. Regarding P+, it is noted that values close to 1 are
obtained for all types of noise and all η. Looking into the
higher noise level in Fig. 3 (b), the performance from the
different noise types is more widely spread. While perfor-
mance for both the power drill and the hand mixer mainly
decrease in S for increasing η, having a constant P+, more
pronounced changes are found for both S and P+ in the
other categories. In general, the worst performance is found
for the Esselte System 2500 and for the muscular noise.

V. Discussion

The scope of this study was to design a low-complexity
event detector. The detector is using a linear combina-
tion of symmetric and antisymmetric functions of different
widths to model the basic EGM waveforms. By using a
dyadic wavelet decomposition with short integer filters, the
result is a low complexity detector structure. Considering
the complexity of the algorithm, a robust functionality is
achieved for moderate to high noise levels.

Within this study no word length evaluation have been
included. Consequently, all results are based on double
precision computations. Still, a proper fixed point word
length selection is expected to only marginally alter the
results.
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Fig. 3. Performance for different external noise and threshold values
in terms of S (darker bars) and P+ (brighter bars). In (a), the
performance for the four noise sources is shown for 25 dB while
in (b), the same is shown for 20 dB.

The GLRT detector among other detection principles
maximizes PD for a constant PFA. In order for this to
hold, both the signal and the noise must be estimated, cf.
(9). However, in this paper the noise level was assumed
to be constant. Introducing a noise level estimation in the
detector, assuming that it can be done to a low cost, is
likely to improve the performance in a noisy environment.
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